COURSE OUTLINE

Department:	Faculty of Computing	Knowledge G	Group:	KG-PL	
Programme:	Computer Science (BSCS)	Class: BSCS-2K23			
Course code:	CS-212	Academic Session/Semester: Spring 2024		Spring 2024	
Course name:	Object Oriented Programming	Pre/co requisite (course name CS-110 FoCP and code, if applicable):		CS-110 FoCP	
Credit hours:	3+1	, ·		-,-	

Course Synopsis	This course will introduce the Object-Oriented (OO) philosophy to software development, which is a modern and powerful approach. Today, many programming languages support the OO concepts. However, during this course, we'll majorly use the Java programming language. The objective is to make the students understand the benefits of using OO techniques over procedural programming practices, and thereby motivating them to use OO concepts in software development. Further, the students will learn some powerful features of the Java programming language.			
Course Learning	1. Understand core OOP concepts	s such as class	es, objects, enca	psulation, inheritance, and
Outcomes	polymorphism.			
(CLOs)	 Evaluate complex programming problems using object-oriented principles analyzing solutions for efficiency and scalability. Build programs using the latest IDEs as per standard practices applicable to the software industry. Develop solutions to real-world problems by applying appropriate object-oriented techniques. 			
Course	Wednesday 14:00-14:50			
Schedule	Friday 10:00-11:50 Lab (Thursday 9:00-12:50)			
Course lecturer	Name Office Contact no. E-mail			
	Dr Aimal Rextin			Aimal.rextin@seecs.edu.p k

Mapping of the Course Learning Outcomes (CLO) to the Programme Learning Outcomes (PLO), Teaching & Learning (T&L) methods and Assessment methods:

No.	Course Learning Outcomes	PLO (SE)	PLO (CS)	BT Lev el	Teaching & Learning Methods	Assessment Methods
CLO 1	Understand core OOP concepts such as classes, objects, encapsulation, inheritance, and polymorphism.	1 (Engineering Knowledge)	1 (Academic Education)	C-2	Active learning, Cooperative Learning, Blended Learning	Assignment Quiz MSE ESE
CLO 2	Evaluate complex programming problems using object-oriented principles analyzing solutions for efficiency and scalability	2 (Problem Analysis)	3 (Problem Analysis)	C-5	Active learning, Cooperative Learning, Blended Learning	Assignment Quiz MSE ESE Labs

CLO 3	Build programs using the latest	5 (Modern Tool Usage)	5 (Modern Tool Usage)	P-3	Active learning, Cooperative Learning,	Labs
	IDEs as per				Blended Learning	
	standard practices					
	applicable to the					
	software industry.					
CLO	Develop	3	4	C-6	Active learning,	Assignments
4	solutions to real-	(Design/Developme	(Design/Develop		Cooperative Learning,	Labs
	world problems by	nt of Solutions)	ment of		Blended Learning	
	applying		Solutions)			
	appropriate					
	object-oriented					
	techniques.					

Details on Innovative T&L practices:

No.	Туре	Implementation
1.	Active learning	Conducted through in-class or lab activities.
2.	Cooperative learning	Conducted through design project. Students in a team of five will be given a design project that requires software engineering process design solutions. Compliance to the design specifications need to be given in the form of written reports.
3.	Blended learning	Conducted through Learning Management System (LMS) of NUST. All information as well as materials related to teaching and learning activities will be shared with class through this system. Some for formative assessments will be also conducted using this system.

Weekly Schedule:

Week 1	Java Basics	
	Introduction to Java Programming Language	
	Compiling & Executing Simple Java Programs	
	Data types & Operators	
	Input / Output	
Week 2	Flow Control & Composite Datatypes	
	Decisions	
	Loops and Iterations	
	• Arrays	
	Strings & String Manipulations	
Week 3	Arrays and strings / functions	
Week 4	Classes and Objects	
Week 5	Basic Concepts	
Week 6	Encapsulation & Data Hiding	
	Access modifiers Constructors & Destructors	
	Setters & Getters	
	Copy Constructor	
	Default and No-Argument Constructors	
	Method (Function) Overloading	
	Static Class Members	
	his Reference	
Week 7	Inheritance In Java	
Week 8	Super classes and sub classes	
	Protected members	

	Method (Function) Overriding	
	Constructors in subclasses	
Week 9	Mid-Semester Break	
Week 10	Polymorphism	
Week 11	 Abstract Classes & Methods Polymorphic Behaviour Final Methods and Classes 	
Week 12	Interfaces and Abstract Classes	
Week 13	Exception Handling	
Week 14	Graphical User Interfaces	
Week 15	File Manipulation	
Week 16	Project Presentations	
Week 17	Revisions	
Week 18	End Semester Break	

Lab Experiments:

Week 18	End Semester Break	
Lab 16	Advanced Topics	
Lab 15	Open-Ended Lab	
Lab 14	I/O and File Handling	
Lab 13	Event Handling	
Lab 12	GUI	
Lab 11	Exception Handling	
Lab 10	Interfaces and Abstract Classes	
Lab 9	Polymorphism	
Week 9	Mid-Semester Break	
Lab 8	Function Overriding	
Lab 7	Function Overloading	
Lab 6	Inheritance	
Lab 5	Constructors	
Lab 4	Classes and Objects	
Lab 3	Composite data types [Arrays & Strings]	
Lab 2	Flow Control [Loops and Decisions]	
Lab 1	Java Basics [Data types and Operators]	

Assessment Methods:

	Assessment	Percentage
Theory: 75%		
1	Quizzes (10-15%)	15%
2	Assignments (5-10%)	10%
3	Mid-Term Exam (25-35%)	30%
4	End-Semester Exam (40-50%)	45%

Labs:25%		
1	Labs	70%
² Project / Final Lab		30%
Total:		100

Learning resources:

Textbook:

- 1. Java How to Program (Early Objects), Paul Deitel and Harvey Deitel, 10th Edition, ISBN 978-1- 292-01819-5, Pearson Education, 2015
- 2. Bruce Eckel, Thinking in Java, Fourth Edition, ISBN-13: 978-0131872486, 25th March 2006. (available online)

Reference Book:

- 1. Computing Concepts with Java Essentials, Cay Horstmann, 3rd Edition, ISBN 0-471-24371-x, 2003, John Wiley & Sons.
- Object Oriented Programming in C++, Robert Lafore, 4th Edition, ISBN-10: 0672323087 | ISBN-13: 978-0672323089, 2001

Grading Policy:

Quiz Policy:

The quizzes will be unannounced / announced and normally last for ten minutes. The question framed is to test the concepts involved in last few lectures. Number of quizzes that will be used for evaluation is at the instructor's discretion.

Project Policy:

Students will be required to develop a project during the course which should be completed towards the end of the semester. They will be graded based on project deliverables and presentation at the end. Students will work in a group/team for projects. A group of 3 students is recommended. At most 4 students are allowed.

Assignment Policy:

In order to develop comprehensive understanding of the subject, assignments will be given. Late assignments will not be accepted / graded. All assignments will count towards the total (No 'best-of' policy). The students are advised to do the assignment themselves. Copying of assignments is highly discouraged and violations will be dealt with severely by referring any occurrences to the disciplinary committee. The questions in the assignment are meant to be challenging to give students confidence and extensive knowledge about the subject matter and enable them to prepare for the exams.

Class participation:

The students are encouraged to participate in class by actively taking part in asking questions from the instructor, sharing his/her thoughts about the topic under discussion, replying to instructor questions, contribute in project presentation and demo. The class participation will be recorded by the instructor and 2% of project marks are assigned to student class participation.

Plagiarism:

SEECS maintains a zero-tolerance policy towards plagiarism. While collaboration in this course is highly encouraged, you must ensure that you do not claim other people's work/ ideas as your own. Plagiarism occurs when the words, ideas, assertions, theories, figures, images, programming codes of others are presented as your own work. You must cite and acknowledge all sources of information in your assignments. Failing to comply with the SEECS plagiarism policy will lead to strict penalties including zero marks in assignments and referral to the academic coordination office for disciplinary action

11 man avig